Inhibition of aquaporin-1 water permeability by tetraethylammonium: involvement of the loop E pore region.

نویسندگان

  • H L Brooks
  • J W Regan
  • A J Yool
چکیده

Previously, the only known blockers of water permeability through aquaporin-1 (AQP1) water channels were mercurial reagents such as HgCl(2). For AQP1, inhibition by mercury has been attributed to the formation of a mercaptide bond with cysteine residue 189 found in the putative pore-forming region loop E. Here we show that the nonmercurial compound, tetraethylammonium (TEA) chloride, reduces the water permeability of human AQP1 channels expressed in Xenopus oocytes. After preincubation of the oocytes for 15 min with 100 microM TEA, AQP1 water permeability was reduced by 20 to 40%, a degree of partial block similar to that obtained with 15 min of incubation in 100 microM HgCl(2). The reduction of water permeability was dose-dependent for tested concentrations up to 10 mM TEA. TEA blocks the Shaker potassium channel by interacting with a tyrosine residue in the outer pore region. We tested whether an analogous tyrosine residue in loop E of AQP1 could be involved in the binding of TEA. Using polymerase chain reaction, tyrosine 186 in AQP1, selected for its proximity to the mercury-binding site, was mutated to phenylalanine (Y186F), alanine (Y186A), or asparagine (Y186N). Oocyte expression of the mutant AQP1 channels showed that the water permeability of Y186F was equivalent to that of wild-type AQP1; the other mutant channels did not conduct water. However, in contrast to wild-type AQP1, the water permeability of Y186F was not reduced with 100 microM TEA. These results suggest that TEA reduces AQP1 water permeability by interacting with loop E.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro analysis and modification of aquaporin pore selectivity.

Aquaporins enable the passage of a diverse set of solutes besides water. Many novel aquaporin permeants, such as antimonite and arsenite, silicon, ammonia, and hydrogen peroxide, have been described very recently. By the same token, the number of available aquaporin sequences has rapidly increased. Yet, sequence analyses and structure models cannot reliably predict permeability properties. Even...

متن کامل

Inhibition of aquaporin-1 and aquaporin-4 water permeability by a derivative of the loop diuretic bumetanide acting at an internal pore-occluding binding site.

Aquaporin (AQP) water channels, essential for fluid homeostasis, are expressed in perivascular brain end-feet regions of astroglia (AQP4) and in choroid plexus (AQP1). At a high concentration, the loop diuretic bumetanide has been shown to reduce rat brain edema after ischemic stroke by blocking Na(+)-K(+)-2Cl(-) cotransport. We hypothesized that an additional inhibition of AQP contributes to t...

متن کامل

The activity of human aquaporin 1 as a cGMP-gated cation channel is regulated by tyrosine phosphorylation in the carboxyl-terminal domain.

In addition to a constitutive water channel activity, several studies suggest Aquaporin-1 (AQP1) functions as a nonselective monovalent cation channel activated by intracellular cGMP, although variability in responsiveness between preparations has led to controversy in the field. Data here support the hypothesis that responsiveness of the AQP1 ionic conductance to cGMP is governed by tyrosine p...

متن کامل

Structural context shapes the aquaporin selectivity filter.

Aquaporins are transmembrane channels that facilitate the permeation of water and small, uncharged amphipathic molecules across cellular membranes. One distinct aquaporin subfamily contains pure water channels, whereas a second subfamily contains channels that conduct small alditols such as glycerol, in addition to water. Distinction between these substrates is central to aquaporin function, th...

متن کامل

A new gating site in human aquaporin-4: Insights from molecular dynamics simulations.

Aquaporin-4 (AQP4) is the predominant water channel in different organs and tissues. An alteration of its physiological functioning is responsible for several disorders of water regulation and, thus, is considered an attractive target with a promising therapeutic and diagnostic potential. Molecular dynamics (MD) simulations performed on the AQP4 tetramer embedded in a bilayer of lipid molecules...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 57 5  شماره 

صفحات  -

تاریخ انتشار 2000